14 research outputs found

    NANOTECHNOLOGY FOR DETECTION OF DISEASES CAUSED BY VIRUSES-CURRENT OVERVIEW

    Get PDF
    Nanotechnology is having a high impact on the development of a novel class of biosensors called nanobiosensors. This technology has utilized some extremely exciting elements for sensing phenomenon improvement. The utilization of nano-materials, nano-rods, nano-particles, nano-tubes have aided rapid, reliable reproducibility and its detection in a much better way. The unique properties of nanobiosensors and its varied applications have influenced biosensing research. Since longtime, nanobiosensors have been utilized worldwide for the diagnosis of diseases co-related with molecular detection of biomarkers. This paper highlights the use of such nanobiosensors for the detection of the virus, infections, fungal pathogens, Human Immunodeficiency Virus (HIV) related diseases such as Cardiovascular diseases (CDVs), Renal Arthritis (RA) through different techniques including electrochemical biosensing, optical biosensing, point of care-diagnostics etc

    GLOBAL OUTLOOK ON MEDICAL DEVICE INDUSTRY

    Get PDF
    Medical devices assume a significant job in providing various healthcare services. The purpose of this article is tantamount to bring about the highlight key insights of the medical device industry and current innovative developments taking place, unique insights, and expectations for coming years from medical device industry professionals around the world. Global markets expect from the sturdiest growth, biggest regulatory challenges. The rising occurrence of acute diseases, regulatory requirements, and consistency in innovation is central point driving the medical device business sector development, later it is significant for the medical device industry to regularize and enhance the method to take into account the requirements of patients

    LIPOSOMES CONTAINING PHYTOCHEMICALS FOR CANCER TREATMENT-AN UPDATE

    Get PDF
    Many phytochemicals exhibit promising effects in treatment and prevention of various cancers, but due to their poor water solubility, stability, bio-availability and target specificity make administering them at therapeutic doses impractical. This is especially true for curcumin, quercetin, resveratrol and berberine. There is rising activity in developing nano drug delivery systems for these phytochemicals. These nano drug delivery systems mainly include liposomes, micelles, solid lipid nanoparticles, nanoemulsions, which are biocompatible and biodegradable nanoparticles. These nanoparticles can increase the stability and aqueous solubility of phytochemicals. They can also be used as sustained drug delivery systems. Much work has also proven that they enhance the absorption and bioavailability of the phytochemicals, protect them from premature enzymatic degradation or metabolism, hence prolonging their circulation time. Besides these parameters, in this review, we have also mentioned the improved target specificity of phytochemicals to cancer cells or tumours via passive or targeted delivery. Hence, nanotechnology cleared the way for developing phytochemical-loaded nanoparticles for prevention and treatment of cancer

    Bone Health and Natural Products- An Insight

    Get PDF
    Bone metabolism involves a complex balance between matrix deposition, mineralization, and resorption. Numerous evidences have revealed that dietary components and phytoconstituents can influence these processes, through inhibition of bone resorption, thus exhibiting beneficial effects on the skeleton. Various traditional herbal formulae in ayurvedic and Chinese medicine have shown demonstrable benefits in pharmacological models of osteoporosis. The present review discusses normal bone metabolism and disorders caused by bone disruption, with particular reference to osteoporosis and current therapeutic treatment. Furthermore the effects of constituents from natural products on bone tissue are explained, with relevant evidences of efficacy in various experimental models

    Antimicrobial Nanomaterials for Food Packaging

    No full text
    Food packaging plays a key role in offering safe and quality food products to consumers by providing protection and extending shelf life. Food packaging is a multifaceted field based on food science and engineering, microbiology, and chemistry, all of which have contributed significantly to maintaining physicochemical attributes such as color, flavor, moisture content, and texture of foods and their raw materials, in addition to ensuring freedom from oxidation and microbial deterioration. Antimicrobial food packaging systems, in addition to their function as conventional food packaging, are designed to arrest microbial growth on food surfaces, thereby enhancing food stability and quality. Nanomaterials with unique physiochemical and antibacterial properties are widely explored in food packaging as preservatives and antimicrobials, to extend the shelf life of packed food products. Various nanomaterials that are used in food packaging include nanocomposites composing nanoparticles such as silver, copper, gold, titanium dioxide, magnesium oxide, zinc oxide, mesoporous silica and graphene-based inorganic nanoparticles; gelatin; alginate; cellulose; chitosan-based polymeric nanoparticles; lipid nanoparticles; nanoemulsion; nanoliposomes; nanosponges; and nanofibers. Antimicrobial nanomaterial-based packaging systems are fabricated to exhibit greater efficiency against microbial contaminants. Recently, smart food packaging systems indicating the presence of spoilage and pathogenic microorganisms have been investigated by various research groups. The present review summarizes recent updates on various nanomaterials used in the field of food packaging technology, with potential applications as antimicrobial, antioxidant equipped with technology conferring smart functions and mechanisms in food packaging

    Phytochemicals and PI3K Inhibitors in Cancer—An Insight

    No full text
    In today's world of modern medicine and novel therapies, cancer still remains to be one of the prime contributor to the death of people worldwide. The modern therapies improve condition of cancer patients and are effective in early stages of cancer but the advanced metastasized stage of cancer remains untreatable. Also most of the cancer therapies are expensive and are associated with adverse side effects. Thus, considering the current status of cancer treatment there is scope to search for efficient therapies which are cost-effective and are associated with lesser and milder side effects. Phytochemicals have been utilized for many decades to prevent and cure various ailments and current evidences indicate use of phytochemicals as an effective treatment for cancer. Hyperactivation of phosphoinositide 3-kinase (PI3K) signaling cascades is a common phenomenon in most types of cancers. Thus, natural substances targeting PI3K pathway can be of great therapeutic potential in the treatment of cancer patients. This chapter summarizes the updated research on plant-derived substances targeting PI3K pathway and the current status of their preclinical studies and clinical trials

    Nanoparticles—Attractive Carriers of Antimicrobial Essential Oils

    No full text
    Microbial pathogens are the most prevalent cause of chronic infections and fatalities around the world. Antimicrobial agents including antibiotics have been frequently utilized in the treatment of infections due to their exceptional outcomes. However, their widespread use has resulted in the emergence of multidrug-resistant strains of bacteria, fungi, viruses, and parasites. Furthermore, due to inherent resistance to antimicrobial drugs and the host defence system, the advent of new infectious diseases, chronic infections, and the occurrence of biofilms pose a tougher challenge to the current treatment line. Essential oils (EOs) and their biologically and structurally diverse constituents provide a distinctive, inexhaustible, and novel source of antibacterial, antiviral, antifungal, and antiparasitic agents. However, due to their volatile nature, chemical susceptibility, and poor solubility, their development as antimicrobials is limited. Nanoparticles composed of biodegradable polymeric and inorganic materials have been studied extensively to overcome these limitations. Nanoparticles are being investigated as nanocarriers for antimicrobial delivery, antimicrobial coatings for food products, implantable devices, and medicinal materials in dressings and packaging materials due to their intrinsic capacity to overcome microbial resistance. Essential oil-loaded nanoparticles may offer the potential benefits of synergism in antimicrobial activity, high loading capacity, increased solubility, decreased volatility, chemical stability, and enhancement of the bioavailability and shelf life of EOs and their constituents. This review focuses on the potentiation of the antimicrobial activity of essential oils and their constituents in nanoparticulate delivery systems for a wide range of applications, such as food preservation, packaging, and alternative treatments for infectious diseases

    Inclusion Complexation of Etodolac with Hydroxypropyl-beta-cyclodextrin and Auxiliary Agents: Formulation Characterization and Molecular Modeling Studies

    No full text
    The present investigation was aimed to prepare inclusion complexes of a therapeutically important nonsteroidal anti-inflammatory drug, etodolac (ETD) with hydroxypropyl-beta-cyclodextrin (HP-β-CD) and to study the effect of l-arginine (l-Arg) as an auxiliary agent on the complexation efficiency of HP-β-CD to improve aqueous solubility and the dissolution property of ETD. The binary and ternary complexes were prepared by physical mixing, coevaporation, and spray drying methods. The complexes were characterized using differential scanning colorimetry (DSC), Fourier transform-infrared spectroscopy (FT-IR), and powder X-ray diffraction (PXRD) studies. The mechanism of inclusion interaction of guest and host was established through <sup>1</sup>H NMR, molecular docking, and molecular dynamics studies. On the basis of preliminary screening studies, l-Arg was found to be the most efficient auxiliary agent for the present research problem. The change in crystallinity of ETD was evident from DSC and PXRD studies which indicated the formation of new solid forms. A remarkable increase in apparent stability constant (<i>K</i><sub>c</sub>) and complexation efficiency (CE) of HP-β-CD was observed in the presence of l-Arg in ternary complexes with improvement in solubility and dissolution of ETD than binary complexes. However, inclusion complexes of ETD obtained by computational studies is in good correlation with the results obtained through experimental methods. More stable complex formation with l-Arg was confirmed by molecular simulation studies too. Thus, the present study led to the conclusion that the ternary complex of ETD-HP-β-CD-l-Arg could be an innovative approach to augment the solubility and dissolution behavior of ETD
    corecore